LOSOM Update

Collier County Board of County Commissioners

September 14, 2021

Nicole Johnson, Director of Environmental Policy, Conservancy James Evans, Director of Environmental Policy, SCCF Dr. Paul Julian, Ph.D., Hydrologic Modeler, Conservancy/SCCF

Caloosahatchee & Coastal Water Quality Affected by both Caloosahatchee Watershed & Lake Okeechobee Discharges

Caloosahatchee Watershed >850k acres

Caloosahatchee - Everglades Connection

Count? Burdenic & Kotons, Lious? Long. B.

1839

Map

Caloosahatchee Valley of Lakes

Caloosahatchee Dredged & Straightened

To Provide Navigation and Flood Control

Caloosahatchee Impacted by Water Quantity & Quality

Caloosahatchee Impacted by Water Quantity & Quality

Too Little Flow

How do Caloosahatchee discharges impact Collier County?

City Of Sanibel, Lighthouse Beach Park, 6-3-18, 1:58 PM, High Tide Is At 2:53 PM

-

Statewide *Karenia brevis* concentrations June 1 - 30, 2018

 Karenia brevis (cells/liter)

 not present/background (0-1,000)

 very low (>1,000-10,000)

 low (>10,000-10,000)

 medium (>100,000-1,000,000)

 midm (>1,000,000,000)

1131

Google ear

City Of Sanibel, Lighthouse Beach Park, 7-17-18, 10:30 AM, High Tide Is At 4:00 PM

Statewide Karenia brevis concentrations July 1 - 31, 2018

 Karenia brevis (cells/liter)

 not present/background (0-1,000)

 very low (>1,000-10,000)

 low (>10,000-100,000)

 medium (>100,000-1,000,000)

 high (>1,000,000)

Data SIO, NOAA, UI

Google earth

Statewide Karenia brevis concentrations August 1 - 31, 2018

 Karenia brevis (cells/liter)

 not present/background (0-1,000)

 very low (>1,000-10,000)

 low (>10,000-100,000)

 medium (>100,000-1,000,000)

 high (>1,000,000)

City Of Sanibel, Lighthouse Beach Park, 9-27-18, 10:25 AM, High Tide Is 2:27 PM

Statewide Karenia brevis concentrations September 1 - 30, 2018

Karenia brevis (cells/liter)

not present/background (0-1,000)
 very low (>1,000-1,000)
 low (>10,000-10,000)
 medium (>100,000-1,000,000)
 medium (>100,000-1,000,000)

September 27, 2018

Google eart

City Of Sanibel, Lighthouse Beach Park, 10-31-18, 11:00 AM, High Tide Is 9:27 PM

Karenia brevis (cells/liter) ● not present/background (0-1,000) ● very low (>1,000-10,000) ● low (>10,000-100,000) ● medium (>100,000-1,000,000) ● high (>1,000,000)

Googlee

City Of Sanibel, Lighthouse Beach Park, 11-21-18, 11:03 AM, High Tide Is 11:30 AM

Statewide *Karenia brevis* concentrations November 1 - 31, 2018

 Karenia brevis (cells/liter)

 not present/background (0-1,000)

 very low (>1,000-10,000)

 low (>10,000-10,000)

 medium (>100,000-1,000,000)

 high (>1,000,000)

November 21, 2018

t t

Google eart

Lake Okeechobee Regulation Schedule

LOSOM Process & Timeline

- LOSOM process started with Scoping Meetings Feb 2019
- LOSOM Public Workshops Sept 2019

From USACE PDT 09 Aug 2021 meeting presentation

Iteration 2 – Model Alternatives

From USACE PDT 19 July 2021 meeting presentation

Concerns with Alternative CC

- Water supply & flood control constraints put pressure on the estuaries as the primary outlets for C&SF Project
- Alternative CC redistributes harmful regulatory flows from the SLE to CE
- Flows to CE are measured at S-77 when conditions are wet does not take into account watershed runoff when making release decisions (flows always measured at S-80 in SLE)
- Does not allow beneficial dry season flows to CE & Everglades in Zone F
- Increases total regulatory flows to CE by 9%, TN & TP loading increases by 10 & 12%, respectively; reduces regulatory flows to SLE by 62% & reduces TN & TP by 62 & 63%, respectively
- Only decreases lake-triggered damaging events to CE by 16% and increases stressful flows (2,100-2,600 cfs) by 58%, while St. Lucie gets 88-91% reduction in lake-triggered RECOVER damaging & stressful flow events
- Caloosahatchee & south are the only outlets in Zone D Lake O recovery periods could increase releases to CE in Zone D
- Allows back flowing of water & nutrients into the lake from C-44 & EAA (C-44 backflow ~60%).

Average annual regulatory flows (QFC flow tag; CRE: S77; SLE: S308) and stress and damaging events based on RECOVER salinity envelope 14-day event counts for Caloosatchee and St Lucie estuaries.

Summarized Data						Percent Different from FWO					
Estuary	Alt	Regulatory Flows (kacft/yr)	Stress Events From LOK ³	Stress Events From Basin ³	Damaging Events From LOK ⁴	Damaging Events From Basin ⁴	Regulatory Flows (kacft/yr)	Stress Events From LOK ³	Stress Events From Basin ³	Damaging Events From LOK ⁴	Damaging Events From Basin ⁴
CRE ¹	NA25 ²	528	183	118	186	173					
	ECBr	515	190	153	205	225	-2.5	3.8	29.7	10.2	30.1
	CC	578	289	89	156	174	9.5	57.9	-24.6	-16.1	0.6
SLE ¹	NA25 ²	187	148	210	142	428					
	ECBr	231	162	186	160	432	23.0	9.5	-11.4	12.7	0.9
	CC	72	13	308	17	469	-61.7	-91.2	46.7	-88.0	9.6

¹CRE: Caloosahatchee Estuary; SLE: St Lucie Estuary; ²NA25 = Future without project (FWO)

 3 Stressful Flows:CRE: \geq 2100 cfs & < 2600 cfs; SLE: \geq 1400 cfs & < 1700 cfs

⁴Damaging Flows:CRE: > 2600 cfs; SLE:> 1700 cfs

Data Source: USACE and SFWMD Interagency Modeling Center

Regulatory Flows & Nutrient Loading

Average percent difference from FWO (NA25) for discharge and estimated nutrient loads over the May 1965 - April 2016 (FL WY 1966 - 2016) period of simulation.

RECOVER Performance Metric

RECOVER salinity envelope evaluation relative to FWO (NA25) during the simulation period of record for Caloosahatchee (top) and St Lucie (bottom) estuaries.

Flood control discharges

Average annual flood control discharges from Lake Okeechobee to Water Conservation Areas and Northern Estuaries over the simulation period of record.

Lake Okeechobee Regulation Schedule

Percent of time above, within, and below Zone D of the regulation schedule.

Modifications Needed to Optimize CC

- Measure <u>all</u> discharges to Caloosahatchee Estuary at the Franklin Lock (S-79)
- Cap regulatory discharges to CE in Zone D to maximum of 2,100 cfs at S-79— consistent with the ecological performance targets for the Caloosahatchee estuary
- If flows are not capped at 2,100 in Zone D, equitably distribute flows across all outlets south, east, & west—when conditions are wet
- Allow for beneficial dry season releases to the Caloosahatchee & Everglades in all zones
- Reduce total volume of water & nutrient loading to CE below NA25 (targeting stressful & damaging flow ranges)
- Minimize or eliminate back flowing of nutrient-rich water from the Everglades Agricultural Area (EAA) & C-44 basins into the lake

Next Steps in the LOSOM Process

From USACE PDT 25 Aug 2021 meeting presentation

